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BRIEF OVERVIEW

• Motivation

• Annual Simulation

• Impact of Sub-Array MPPT

• Applications to Performance Modeling
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PROBLEM:  PHOTOVOLTAICS AND THE BUILT

ENVIRONMENT
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• PV mismatch loss 
from:

– Panel Variance

– Soiling

– Temperature

– Solar Availability

• Directional

• Shading

• Mismatch = 
disproportionate 
losses!



SOLUTION:  DISTRIBUTED MAXIMUM POWER

POINT TRACKING (DMPPT)

• DC-DC converters or 
DC-AC microinverters
which interface subset 
of PV array to the rest 
of the array or to the 
grid

• String, module, or 
bypass diode levels

• Many commercial 
products currently 
under development or 
available
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GOAL

Methodology to accurately predict benefits 
of DMPPT 

• What are qualities of PV systems that will 
benefit most?

• How should nonuniform operating conditions 
and DMPPT power converters be modeled?
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ANNUAL SIMULATION

• Simulation of annual array energy capture, shading 
loss, and power recovery potential

• MatLab models:
– Panel:  Shell 85W, cell level 5-parameter model (shaded 

and unshaded) with reverse breakdown 
– Power Converters:  Prototype, efficiency based on detailed 

electrical models (~95% efficient on average) and 
measured insertion loss

– Inverter:  Solectria, efficiency based on manufacturer’s 
curves using input voltage & DC power from the panels

• Weather data:   TMY-3 hourly irradiance (HDKR) and 
temperature (NOCT) for Boulder, CO

• Experimental Validation:  Simulation performance 
within 5% of test system
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PARALLEL STRING SHADING DISTRIBUTION

Isolated Shading – One string 
in array is shaded

Distributed Shading – Both 
strings in array are shaded
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Power Output vs Voltage – 2% Array Area Shaded

Voltage (V)

• Low shaded radiation = 5% of unshaded; high shaded radiation = 50%

• Distributed shading outperforms isolated

• Limited power recovery potential with per-panel MPPT (“Max Shaded”)
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Power Output vs Voltage – 15% Array Area Shaded

Voltage (V)

• Low shaded radiation = 5% of unshaded; high shaded radiation = 50%

• Isolated shading outperforms distributed 

• High power recovery potential with per-panel MPPT (“Max Shaded”)



SHADING OBSTACLES

• Opaque, cylindrical 
objects

• Shadow mapped onto 
array

• Shading on per-cell 
basis

• Shaded cells receive 
diffuse/reflected 
radiation 
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SIMULATED CASES

• 2.7kW south 
facing BIPV array 
with roof pitch tilt 
in Boulder, CO

• 2 parallel string 
divisions

• Obstacles have 1’ 
and 10’ diameter

• Corner or center 
placement 

• 8 total cases
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ANNUAL SHADE LOSS

CONVENTIONAL ARRAY -- SMALL OBSTACLE
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• Disproportionate losses based on 
fraction of area shaded

• Inverter input voltage range affects 
shading loss

• Greater annual losses when array 
shading isolated to one string

• Losses very dependent on array 
configuration!

Object 

Position

String 

Division

% of Hrs. 

Shaded

Avg % 

Cells 

Shaded

% Hrs. MPP 

Outside Inverter 

Range

% System Output 

Loss From 

Shading

Left-Right 37% 2% 9% 6%

Top-Bot 37% 2% 5% 4%

Left-Right 65% 1.5% 14% 8%

Top-Bot 65% 1.5% 4% 5%

Corner

Center



IMPACT OF DMPPT
SMALL OBSTACLE
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• System shading loss with DMPPT independent of array string 
division

• Small fraction of power is recoverable using ideal modular power 
point tracking , so converter power gains outweighed by 
efficiency and insertion losses of prototype unit

• Recoverable power/energy fraction highly dependent on array 
configuration!

Object 

Position

String 

Division

% Shading 

Loss with 

Prototype 

Converters

Shaded System %Output 

Difference -- Prototype 

Converters vs None

Shaded System Max Potential 

%Output Difference -- Modular vs 

Central MPPT

Left-Right 8% -2% 4%

Top-Bot 8% -4% 2%

Left-Right 9% -1% 5%

Top-Bot 9% -4% 2%

Corner

Center



ANNUAL SHADE LOSS

CONVENTIONAL ARRAY -- LARGE OBSTACLE

14

• Disproportionate losses based on 
fraction of area shaded

• Inverter input voltage range affects 
shading loss

• Greater annual losses when array 
shading distributed between strings

• Losses very dependent on array 
configuration!

Object 

Position

String 

Division

% of Hrs. 

Shaded

Avg % 

Cells 

Shaded

% Hrs. MPP 

Outside Inverter 

Range

% System Output 

Loss From 

Shading

Left-Right 62% 11% 9% 18%

Top-Bot 62% 11% 11% 22%

Left-Right 86% 11% 17% 28%

Top-Bot 86% 11% 22% 40%

Corner

Center



IMPACT OF DMPPT
LARGE OBSTACLE
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• System shading loss with DMPPT independent of array string 
division

• Significant fraction of power lost is recoverable using modular 
power point tracking,  so there are substantial converter power 
gains despite efficiency and insertion losses of prototype unit

• Recoverable power/energy fraction highly dependent on array 
configuration!

Object 

Position

String 

Division

% Shading 

Loss with 

Prototype 

Converters

Shaded System %Output 

Difference -- Prototype 

Converters vs None

Shaded System Max Potential 

%Output Difference -- Modular vs 

Central MPPT

Left-Right 15% 3% 8%

Top-Bot 15% 8% 13%

Left-Right 21% 10% 15%

Top-Bot 21% 31% 37%

Corner

Center



MODELING AND SHADE IMPACT FACTOR (SIF)

• Shade Impact Factor (SIF) is relation between area of array 
shaded and power lost due to shading

SIF=

• Calculated assuming shaded portions receive either (i) no 
radiation or ii) the diffuse/reflected radiation

• Calculated with array fraction shaded in terms of cells 
(area) or substrings (bypass diode groups)

• Method:
– Hourly calculate % array shaded

– Apply resulting derate to hourly unshaded power produced

– Calculate annual derated sum and compare to shaded cell-by-cell 
model total, adjusting weighting until correct SIF is found
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ANNUAL CALCULATIONS OF SIFS FOR

CONVENTIONAL VS DMPPT SYSTEMS

SIFCONV  = SIFDMPPT = 
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Object 

Size

Array 

Division
SIF

Area 3.2 - 5.3

Substrings 1.1 - 1.7

Area 1.6 - 2.4

Substrings 1.3 - 1.9

Small

Large

Object 

Size

Array 

Division
SIF

Area 2.7 - 2.9

Substrings 0.9 - 1

Area 1.2 - 1.3

Substrings 0.9 - 1

Small

Large



CONCLUSIONS

• Power recovery potential depends on shading 
severity, array configuration, inverter voltage range, 
and panel electrical characteristics

• DMPPT power converters significantly increase 
annual energy capture potential in arrays with 
moderate shading, especially for shading distributed 
across multiple strings 

• No “one size fits all” SIF to quantify shading losses in 
conventional systems

• Preliminary results indicate potential for SIF to be 
used to accurately model DMPPT; most promising 
when implemented at bypass diode substring level 
accounting for radiation received by shaded 
substrings
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MIC OPERATION

• Buck mode:  

Imod < Istring.  Converter 
decreases module Vout, 

while increasing Imod to 
Istring

• Boost mode: 

Imod > Istring.  Converter 
increases module Vout
while decreasing Imod to 
Istring

• Pass-through mode:
Imod = Istring.  Converter 
input directly connected 
to output (most 
efficient)
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EXPERIMENTAL VALIDATION

MIC Power Stage Efficiency Verification

Efficiency typically above 95% during normal 
operation

Numbers do not include “housekeeping” 
insertion loss of 0.5-0.8W

Simulation results within 5% tolerance 
of experimental data

Simulation Performance Verification

21



PARTIALLY SHADED SERIES STRING PERFORMANCE

(LOW DIFFUSE FRACTION)
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PARTIALLY SHADED SERIES STRING PERFORMANCE

(HIGH DIFFUSE FRACTION)
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WHAT IF I JUST USE SIF=1?

Shaded Receives No Radiation Shaded Receives Diffuse Radiation
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Array 

Fraction
DMPPT? Misprediction

NO 3% - 38%

YES 0% - 2%

NO 0% - 30%

YES -5% - -1%

Area

Sub 

Strings

Array 

Fraction
DMPPT? Misprediction

NO 4% - 43%

YES 2% - 4%

NO 1% - 37%

YES -0.5% - 0.5%

Area

Sub 

Strings


